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Abstract: The significant penetration of renewables, in the Hellenic electricity system, during the last
12 years, was based on feed-in tariff-supporting schemes, according to the compliance to European
Directives. The characteristics of this penetration are presented and analyzed in this paper based on
real data. Photovoltaics, wind parks, hydroelectric plants, biomass-driven plants, and cogeneration
systems are examined. The cost of the feed-in tariff incentives is qualified and analyzed. Simple
but effective models are proposed to describe renewable seasonal variation: (a) A simple cosine
model adequately describes the seasonal performance of various renewable technologies in terms
of capacity factor; (b) a smart seasonal model based on the separation between winter and summer
consumption activities (both following normal distributions) adequately describes the electricity
consumption profile. The predicted values of renewable shares using the proposed models were also
validated with historical data. Thus, the applied models can be used to forecast renewable shares
under different penetration scenarios.

Keywords: photovoltaic; aeolic; wind; hydroelectric; electricity market; renewable variability;
electricity consumption modelling; capacity factor modelling; feed-in tariff; RES surcharge

1. Introduction

Over the last 15 years, a large-scale diffusion in renewables has occurred on a European level, due
to the mandatory commitments of the 20-20-20 European Directives. In fact, in 2017, the renewable
energy sources (RES) electricity share in Europe reached the percentage of 30.8%, compared to 14.3%
in 2004. Countries like Denmark, Latvia, Austria, Portugal, and Sweden produce more than 50% of
their electricity from renewables, while Germany, Spain, and Italy follow with percentages higher than
30% [1].

In Greece, the share of RES energy in gross final energy consumption grew from 6.9% in 2004
to 16.3% in 2017, aiming to reach at least 18% in 2020, which is the European target for the country.
During this period, RES investments were significantly encouraged from beneficial supporting policies.
Feed-in tariffs, provided by a series of relative laws, triggered a rapid deployment of renewables in the
country [2–5].

From an environmental point of view, RES electricity production reduces harmful emissions
including greenhouse effect gases that cause climate change and facilitates the implementation of
European targets towards this direction. However, besides these benefits, their extensive deployment
has posed various challenges in the energy market [6]. Considering the volatility and stochastic nature
of renewable technologies operation, the efficient management of power systems, in terms of planning
and operation, has been the subject of several publications [7–12]. In addition to this, the idea of energy
storage has been developed [13], especially for non-interconnected islands [14].
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Moreover, the cost of renewables and their impact on electricity prices is a topic of debate in
many countries that have experienced large-scale RES development. Representative examples are
Germany and Italy, which adopted especially attractive support schemes (feed-in tariffs in Germany,
green certificates schemes and feed-in premiums in Italy), and significantly increased their renewable
electricity share. Sensfuß et al. and Clò et al. analyzed the RES price effect in the market of these two
countries in [15] and [16], respectively. An overview of studies attempting to quantify the RES price
impact can be found in [17].

In Greece, a group of researchers developed analytical simulation models to examine the
consequences of RES integration in Hellenic energy market and their effect on the (a) the system
marginal price (SPM), (b) the payment of the consumers, (c) RES surcharge for the payment of
feed-in tariffs, (d) CO2 emissions, and (e) generation costs [9,18,19]. According to the results, the
integration of RES in Greece leads to lower values of SMP and CO2 emissions, while the payment of
the consumers increases.

The scope of this paper is (a) to present and analyze the evolution of the legislative framework,
that triggered the increased share of RES in the Hellenic electricity market, (b) to describe and analyze
the characteristics of penetration, and (c) to quantify the cost of incentives and its effect on electricity
market. Five RES technologies are examined, namely photovoltaics, wind parks, small hydroelectric
plants (namely, installations without a reservoir), biomass-driven plants, and cogeneration systems.

Furthermore, the paper aims to propose the appropriate mathematical models for the description
of the renewable seasonal performance, in order to forecast the consequences of more intensive
penetration in the future.

The evolution of the legislative framework is presented in Section 2 and its effect on penetration is
analyzed in Sections 4.1 and 4.2. The seasonal variation models are presented in Sections 3.2 and 4.4,
these models are fitted to real data of Section 4.3. The resulting models are used to analyze various
future scenarios in Section 4.5 and the results are summarized in Section 5.

2. The Evolution of the Hellenic Legislative Framework

At the national level, the first regulation on the production of electricity from RES is contained in
Law 2244/1994, according to which the production of electricity is allowed, among other things, by RES
(without, however, being protected in a certain form of differentiated treatment), and the electricity
produced could be allocated exclusively to a public power corporation (PPC), which was, respectively,
obliged to purchase.

Provisions for RES were also included in Law 2773/1999. This Law introduced the obligation to
obtain a license for the production of electricity from renewable energy sources and, for the sake of
promoting their production, it was the obligation of the transmission system operator (TSO) to give
priority to their dispatch, whereas in the non-interconnected islands, PPC, as the administrator of the
distribution network, was also obliged to absorb the electricity produced from RES. To this end, it was
stipulated that the holders of an electricity generation license from RES will conclude a relevant contract
with the TSO, or in the case of non-interconnected islands, with the distribution network operator
(PPC), according to the provisions of the relevant system and distribution network management codes.
The price of the absorbed electricity has been provided to the producers themselves by the competent
operator and is recovered from them through a special RES Account, the management of which was
assigned to the Hellenic transmission system operator (HTSO, DESMIE known in Greek) and its
resources were determined by the Law.

The first specialized national legislation on RES was Law 3468/2006, where among others, the
provisions of European Directive 2001/77/EC were transposed and incorporated in the Greek legal
order. Through this law, the framework for the production of RES electricity became autonomous from
the general framework for electricity. An obligation was imposed on the TSO and the operator of the
non-interconnected islands to conclude a contract for the purchase of electricity from renewable energy
sources. Furthermore, the issues of pricing for the energy sold under the feed-in tariff (FIT) fixed-price
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compensation model were introduced. The priority in absorption of the RES-electricity was maintained,
aiming to achieve national (and European) RES targets. Under the same Law, Greece self-committed
itself for the first time in targeting RES contribution. In detail, the target of RES electricity contribution
in total final gross electricity consumption was set at 20.1% by 2010 and 29% by 2020. It was also
specifically envisaged to establish a development program to promote the production of electricity
especially from PV stations with a capacity of at least 500 MW connected to the interconnected system
and at least 200 MW for the non-interconnected islands up to 31 December 2020.

Law 3734/2009 foresaw a progressive decrease of the FIT for each semester and extended the
duration of the power purchase agreements (PPAs) from 10 to 20 years. It also stipulated the contracted
FIT was to be maintained for a period of 18 months since the signature date of the PPA. Should the
activation occur past the 18-month interval, the guaranteed tariff was no longer maintained and was
set according to the provisions of the equivalent semester of its activation [20]. Finally, the concept of
the floating-rate compensation over the system’s margin price (SMP) for feed-in premium (FIP) for PV
plant connections after 1 January 2015 was first introduced.

With Law 3851/2010, the objective of RES participation in total energy consumption according
to Directive 2009/28/ EC was verbatim adopted as a “national target” while the provisions of Law
3468/2006 were amended and/or supplemented. Among others, electricity produced from RES was
rationalized. Additionally, Law 3851/2010 significantly simplified RES licensing procedure.

By virtue of Law 3468/2006, as amended by Law 3889/2010, the national targets for RES are set by
ministerial decision (MD) of the Ministry of Environment, Energy, and Climate Change, setting the
limits of installed capacity and its breakdown by RES technology and producer category, as well as the
process of any necessary suspension of RES licensing, in case these limits are exceeded. By virtue of
the proposed provision, the MD/F1/oik.19598 was issued and officially defined the national targets and
the projected proportion of installed capacity per RES technology for the years 2014 and 2020 (year
of implementation of the European target) and the possibility of suspending the permitting and/or
connection procedure by RES technology and/or by producer category by decision of the Minister of
Environment, Energy and Climate Change.

With the Law 4001/2011, the existing regulations were basically maintained and adjusted in the
new market structure. Thus, the responsibility of Hellenic electricity market 0perator (HEMO, LAGIE
SA known in Greek) and Hellenic electricity distribution network operator (HEDNO, DEDDIE SA
known in Greek) to enter into contracts for the sale of electricity of RES producers was foreseen,
according to the provisions of Law 3468/2006. Furthermore, the provisions for the recovery from the
Special RES Account of the amounts that HEMO and HEDNO pay to the RES producers and the
sources of input of the RES account were also refined. Additionally, the authority of determining
the numerical values of the rates for specifying the special RES Levy (ETMEAR known in Greek) on
consumers’ bills was transferred to the regulatory authority for energy (RAE). Finally, a part of the
auctioned amount of unallocated greenhouse gas emission allowances were designated as proceeds of
the RES Account.

Through Law 4042/2012, a special fee paid by the lignite electricity producers was added to the
resources of the RES Account amounting 2 Euros/MWh for lignite produced electricity. In an effort
to address the serious concerns raised about the long-term financial sustainability of the Greek PV
market, the MD 2262/2012 during January 2012 imposed an approximate 15% reduction of the tariffs.
The reduction rates were normalized to the initial tariffs introduced by the Law 3468/2006, which were
maintained for some semesters as stipulated by the Law 3734/2009 and 3851/2010. In accordance with
this decision, provisions were also taken for a smooth and reasonable transitional period. In fact, the
applications that had already been submitted to the market operator for PPAs since the publication
date of this decision but were not finalized until then, preserved the tariffs that were foreseen in Law
3851/2010. Likewise, the MD 2301/16933/2012 during August 2012 envisaged a further 28% reduction of
the tariffs. A transitional period similar to the one previously described came into force regarding the
tariffs. Essentially, the Law 4093/2012 enacted in November 2012 was the first one to establish emergent
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measures for rationalizing the funding mechanism for the remuneration of the energy generated
from RES and PV stations. More specifically, it foresaw a “solidarity surcharge” (25–30%) for the
energy generated during the period from 1 July 2012 to 30 June 2014. Most importantly, it stipulated
the guaranteed tariff to be the one in effect during the semester when the PV station was activated.
The cases that were excluded from this requirement were those that either had already submitted
application for a PPA or had signed the agreement before the publication of Law 4093/2012. Finally, it
required PV stations to be activated within four months after the implementation of the law, practically
providing a short transitional period until March 2013 [20].

The 30% solidarity surcharge on PVs was subsequently modified by Law 4152/2013, based on
their initial nominal FIT and connection date, to 34–42%. Law 4152/2013 also introduced the concept of
minimum floor income from the wholesale market for the RES account on the basis of the corresponding
weighted average variable cost of conventional thermal units (WAVCCTU) in the interconnected
system, for the MWh infused by RES. The aim was that the minimum compensation to the RES account
for the production of renewables should at least correspond to the avoided (theoretically) WAVCCTU.
It is reported as theoretical, because WAVCCTU is calculated on the basis of the variable costs and
infusions of the thermal units that retained their function despite the infusion of the RES, and not those
whose operation was actually avoided and that were more expensive according to Merit Order model.

By Law 4254/2014, the tariffs for the sale of the RES projects in operation were unilaterally redefined
in spite of the signed contracts in operation, for the purpose of downward harmonization–homogeneity
of the economic returns (Project IRR) of the projects of all technologies in a period of 20 years and the
stabilization of the RES account through the permanent containment of its outflows. Furthermore, the
deletion of a part (€303 million) of its accumulated deficit through a compulsory credit invoice from
RES producers was introduced. The imbalance in the economic returns of RES, and in particular of
PVs, was created due to the rapid decrease in their installation cost without, however, a corresponding
reduction in the offered FITs. As mentioned, prior to Law 4093/2012, the tariff was allowed to be held
for 18 to 36 months depending on the capacity of the plant, below or above 10 MW, respectively, from
the signing of the PPA with the market operator. In other words, the plants were not connected to the
grid with corresponding-contemporary FIT, but with a much older (according to the time of signing
the sales contract) corresponding to a significantly higher installation cost. Thus, while the tariffs for
the new plants each time theoretically were reduced through MDs, these reductions did not penetrate
the market due to the old FIT holding model in place. Finally, PPAs were extended by a period of
seven years during which the tariff is defined equal to 90 Euros/MWh for a maximum annual energy of
1500 kWh/kW, or as determined by the market operator during the time of their expiration in the future.

With Law 4414 introduced in August 2016 in compliance with the European Commission’s
Guidelines for State Aid, the aim for new renewable projects and their remuneration schemes was
to converge and integrate better to electricity market operation at an optimum level of cost for the
consumer, which would closely follow the declining cost of each relative renewable technology
separately. Towards this direction, the FIT scheme was replaced with a sliding feed-in premium
(FIP) model. New reference tariff (RT) prices introduced for each RES technology, while initially
for PVs and later-on for wind projects, were provided to participate in competitive procedures for
gaining this RT price. The sliding premium, namely the added remuneration on top of the market
participation revenue, shall be calculated monthly, as the difference between, on the one hand, the
RT applicable for the “contracts of difference” (feed-in premium contracts, FiPC), and on the other
hand, the special market price for renewables (SMPRES) for the specific RES technology: FIP = RT
− SMPRES. The FiPCs are signed between the producer and the market operator. The SMPRES will
be calculated differently for intermittent (i.e., wind power, solar PV, and small hydro power plants)
and non-intermittent (i.e., biomass, biogas, geothermal, solar thermal including storage facilities, and
highly efficient co-generation of heat and power plants) renewable energy projects [21].

Since Law 4414/2016 for market participation and the competitive procedures introduced for the
RT was effective for PV and wind projects above a threshold of installed capacity, the phenomenon of
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on-purpose division of projects to smaller appeared, since investors were preferring to bypass the new
framework and instead continue to receive a regulated FIT for all new projects having in their portfolio.
With Law 4602/2016, the State limited the ability of investors to enjoy, both directly and indirectly
through affiliated companies, new PV < 500 kW and Wind < 3 MW projects outside competitive
processes for the RT, to only two per technology. All the rest should participate in RAE’s auctioning
processes to get a RT. The challenge in RAE’s auctions to get a RT for a new licensed PV plant (or wind
farm) has to do with the overfill rule applied, initially at 75% and later 40%. This overfill rule means
that from whatever licensed projects participate in an auction, only a portion of them will be finally
selected and receive a RT. This portion relates to the total MWs participating in the auction divided by
the overfill factor of 1.75 initially or 1.40 rule later on. The application of this rule affects the number of
projects eligible to succeed in the auction through offering the lowest prices and does not alter the size
of the projects eligible or selected.

Beginning 2019, through its new national plan for RES penetration in final gross energy
consumption as submitted to EU, Greece set the target at 32% towards 2030. For PVs, this new
target results in a final installed capacity of 6.9 GW during 2030. Intermediate targets also set for PVs
are 3.3 GW for 2020 and 5.5 GW for 2025.

3. Data and Methods

3.1. Definitions

The renewable penetration is expressed mainly by two magnitudes: (a) The installed power of
each renewable source (technology) and (b) the renewable energy (electricity) produced and infused
into the grid:

P the installed power (MW);
E the electricity produced (MWh).

The evolution of the installed power versus time is, generally, a monotonically increasing function,
except the case of the disconnection of some installations. The renewable energy is the electricity
produced by the installed power over a specific time interval, e.g., a month or a year. Its evolution
versus time is analogous to the installed power and follows a seasonal variation depending on the
characteristics of the renewable technology and the weather conditions. Monthly data reveal the
seasonal variation while 12-month moving averages reveal the long-term evolution.

The penetration characteristics are usually further expressed by two crucial magnitudes; (a) the
capacity factor and (b) the share of renewables in electricity consumption:

c the capacity factor (-);
s the renewable share in electricity consumption (-).

Both the capacity factor and the renewable share refer to a specific time interval and to a specific
technology. The renewable share also refers to the total renewables.

The capacity factor of a power plant is the ratio of its actual output over a time period, to its
potential output if it were possible for it to operate at full nominal capacity continuously over the same
time period:

c =
E

P t
(1)

where t is the corresponding time interval. The renewable share is defined by the following equation:

s =
E
D

(2)

where, D (MWh) is the electricity consumption.
The electricity consumption appears as (a) a long-term evolution depending on the economic

growth and (b) a seasonal variation depending on the weather and country activities profile.
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The capacity factor appears as a seasonal variation. It expresses the characteristics of the renewable
technology and the weather conditions. Capacity factor remains as a long-term constant regardless of
the evolution of the installed power. It could be proved by considering the 12-month moving average.

Instead, renewable share appears as both (a) a seasonal variation and (b) a long-term evolution.
The seasonal variation follows the capacity factor variation while the long-term evolution follows
the installed power evolution. Again, 12-month moving average insolates the seasonal variation and
reveals the long-term evolution.

The renewable share expresses the degree of renewable penetration. The penetration targets are
usually based on the renewable share. Moreover, the renewable share is a crucial characteristic of
the renewable penetration since its seasonal and hourly variation affects the merit order curves and,
consequently, it influences the resulting system marginal price. The renewable share depends on the
installed power, the capacity factor, and the electricity consumption.

Typically, the cost of the feed-in tariffs incentives supporting penetration is the result of the
difference between the prices of (a) the feed-in tariffs (FIT), at which the Hellenic electricity market
operator (HEMO) buys electricity from the renewable producers and (b) the system marginal price
(SMP), at which the HEMO sells electricity to suppliers. This total cost is divided by the electricity final
domestic consumption, since losses or exports do not participate in support, to obtain the renewable
surcharge on electricity price (RSC) due to the renewable supporting instruments.

RSC =
(FIT − SMP)·E

D
= (FIT − SMP)·s (3)

where RSC (€/MWh) is the renewable surcharge, FIT (€/MWh) is the feed-in tariff, SMP (€/MWh) is the
system marginal price, E (MWh/year) is the renewable electricity production, and D (MWh/year) is
the total electricity domestic consumption. Renewable surcharge may refer to a separate renewable
technology, or to the total renewables.

It should be noted that RSC is an indicator of RES penetration cost, which is a different quantity
from renewable levy (ETMEAR, in Greek terms) and is regulated by the regulatory authority for energy
(RAE) and applied in consumers’ electricity bills.

3.2. Modelling

A penetration model should be able to forecast long-term evolution and seasonal variation of
the penetration. Long-term evolution depends on the legislative framework as analyzed in Section 2
above, and it is very difficult to forecast since laws are changed versus time. Thus, various scenarios
should be supposed and used for long-term forecasting. Instead, seasonal variation can be extracted
and modelled from historical data.

Concerning the capacity factor, a cosine equation is the simplest function describing the seasonal
variation:

c = cav − ∆c· cos
(
2π

t− to

12

)
(4)

where c (-) is the capacity factor, t (months) is the time, cav (-) is the annual average capacity factor, ∆c
(-) is the seasonal variation (half range of annual variation of the capacity factor), and to (months) is the
time at minimum capacity factor.

The seasonal variation ∆c and the corresponding relative seasonal variation ∆c/cav is a crucial
characteristic of each different RES. The seasonal variation is different from the random variation
(volatility) of the RES. The seasonal variation is predictable while the random variation is statistical.

The random standard variation σ for each RES technology is calculated by the following equations:

σ =

√∑12
j σ

2
j

12
(5)
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σ j =

√∑n
i

(
ci j − µ j

)2

n
(6)

µ j =

∑n
i ci j

n
(7)

where σ (-) is the random standard variation, ci j (-) is the capacity factor of the calendar month j (j = 1,
2, . . . , 12) of the year i (I = 1, 2, . . . , n), σ j (-) is the standard variation of the calendar month j, and µ j
the mean value of the calendar month j.

Concerning the share of renewables, the following equation can be used:

s =
E
D

=
P·c·t

D
(8)

It should be emphasized that P only appears in long-term evolution, c appears only seasonal
variation, and both s and D appear both long-term and seasonal variation.

The seasonal variation of the electricity consumption cannot be described by a cosine function since
it appears as two peaks, one during winter and one during the summer. Thus, it is proposed to use three
additive kinds of consumptions with different variation each: (a) A constant consumption independently
of the season, (b) a winter activities consumption, and (c) a summer activities consumption. A normal
distribution is proposed to describe both the winter and summer activities with different characteristics.
Thus, the proposed model can be described by the equation:

D =
DT(1− dw − ds)

12
+ dwDT·N(two, ∆tw, t) + dsDT·N(tso, ∆ts, t) (9)

where t (months) is the time, D (TWh/month) is the electricity consumption at time t (months), DT

(TWh/year) is the total electricity demand during the year, dw (-) is the portion of the total consumption
for winter activities, ds (-) is the portion of the total consumption for summer activities, two (months) is
the time of the peak of winter activities, ∆tw (months) is the typical duration of the winter activities, tso

(months) is the time of the peak of summer activities, and ∆ts (months) is the typical duration of the
summer activities.

The normal distribution is expressed by the equation:

N(µ, σ, t) =
1

√

2πσ2
exp

− (t− µ)2

2σ2

. (10)

3.3. Data

The following monthly data for 12 years, 2007–2018, are retrieved from the Hellenic electricity
market operator [22,23]. The data refer to photovoltaic parks, wind parks, small hydropower plants,
biomass-driven plants, and cogeneration systems.

• Installed power (P);
• Injected electrical energy (E);
• Average feed-In tariffs remuneration for every renewable energy source (FIT);
• System marginal price (SMP);
• Total electricity consumption (D).

4. Results and Discussion

4.1. Renewables Penetration

Figure 1 presents the evolution of the renewable installed power for 12 years up to 2018 along
with the crucial laws supporting their penetration. Figure 1a presents all renewables, photovoltaics,
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wind, small hydropower, biomass, and cogeneration, while Figure 1b focuses on low penetration
of small hydropower, biomass, and cogeneration. Wind electricity follows an almost linear growth
independently on the legislation framework. Instead, photovoltaic penetration appears in a step
increment during the years 2012 and 2013, remaining constant for the following years. Hydropower
follows linear growth with different rates before and after the year 2010. Both biomass and cogeneration
appear to have negligible penetration.

Figure 2 presents the evolution of the corresponding renewable electricity produced. It follows
the long-term evolution of the installed power with an additional seasonal variation depending on the
type of renewable technology.

For comparison, the total electricity consumption is presented in Figure 3, along with the
12-month moving average to eliminate seasonal variation. It is concluded that the long-term electricity
consumption in Greece during the debt crisis remains rather constant.

Based on Figures 2 and 3, Figure 4 further presents the penetration shares of renewables. The main
conclusion is that each RES technology has its own growth path that obviously depends upon several
factors. In an effort to describe and comment on these factors, it is not only a matter of profitability.
The security (predictability) of supply of the primary source of energy, the general stance of local
communities against each specific RES technology, the ease of licensing framework and procedures,
the need to use public land for the investment instead of private, the proximity, ease and relative cost
of getting access to the grid, and finally, the typical magnitude of each RES investment, play significant
roles for their development profile. Undoubtably, sun and wind in Greece provide the best prospects
of abundance as primary sources of renewable energy. Sun, however, is more easily predictable and
this is reflected in PV electricity as will be shown later in this paper. This feeling of easier predictability
combined with smaller typical plant investments and rapidly declining installation costs, make PVs
attractive to broader investor profiles and groups. Presuming that national targets and system needs
offer space for PV growth, this is reflected in their, at times, massive penetration increase. On the
other hand, water resources for small hydroelectric plants, namely small rivers that are potentially
suitable for electricity generation, are limited in the country. Furthermore, small hydro traditionally
face skepticism from local communities that feel as though they are losing a natural resource along the
kilometers of the conduit that drains water to the electricity generation plant. Licensing procedures are
long and extensive for such kind of investments, and public consultation with local communities is
crucial. Finally, biomass and biogas investments depend upon raw materials that moreover should be
available near the plant in order to reduce costs and preserve profitability. Between these two, we
feel biogas plants offer more potential for future development due to the increasing need to exempt
livestock units from organic waste.
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Figure 1. Renewables penetration: installed power versus calendar year: (a) pv = photovoltaic parks, w
= wind parks, h = small hydroelectric plants, b = biomass driven plants, c = heat and power cogeneration
systems, L = law number/validation date, (b) h = small hydroelectric plants, b = biomass driven plants,
c = heat and power cogeneration systems. Data from hellenic electricity market operator [22,23].
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4.2. The Cost of Renewables Penetration

As described previously in Section 2, the feed-in tariff tool was selected as the main support
scheme for triggering renewable penetration increase in Greece since 2006. Feed-in tariffs (FITs) for
new plants change versus time according to the laws applied.

Since feed-in tariffs are greater than the system marginal price (SMP), there is typically an
additional cost in overall electricity market. In order to quantify and compare this burden, the
additional RES cost is divided by the overall electricity consumption (Equation (3)). This surcharge is
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expressed in € per MWh, as is presented in Figure 5, and is also compared with the system marginal
price (SMP). The total cost of electricity, that is, the system marginal price plus the RES surcharge, is
also presented.

It must be noted, however, that increased RES penetration decreases SMP as shown in Figure 6.
So, the difference between FIT and SMP is not the true additional cost for RES penetration, since if RES
were not present, SMP would be higher. This is the reason why the difference between FIT and SMP
was called “typical” additional cost due to RES.

As shown in Figure 6a when RES surcharge is increased, the system marginal cost is decreased.
This phenomenon is the consequence of the merit order curve in the day-ahead electricity market,
which calculates the system marginal price. This merit order effect will be discussed in a future paper
by analyzing hourly data from the day-ahead electricity market but still, based on present monthly
data, the above relationship can be discovered. Thus, Figure 6a reveals the relationship between RES
surcharge and system marginal price, or equivalently in Figure 6b, the relationship between the RES
penetration share and the system marginal price. The population of points in Figure 6a,b is different,
due to the fact that the market operator began publishing the weighted average FIT of the renewables
per month only after January 2012. On the contrary, RES production on a monthly basis is reported
since almost the beginning.
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4.3. The Seasonal Variation of Renewables

Figure 7 presents the capacity factor versus the month of the year for 12 years separately for each
technology. The results are valuable:
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Photovoltaic capacity factor follows the seasonal variation of solar radiation from the minimum,
about 10%, in December–January to the maximum 25% in June–August. Wind energy also appears to
be a severe seasonal effect from 15% in August to 30% in January. These results refer to mainland parks,
which are connected to the national grid, excluding non-interconnected islands. Hydropower follows
a significant seasonal variation from a minimum of 20% in September to a maximum of 60% in March
following the rainfalls and snow melting process. Cogeneration also appears to have a significant
seasonal variation from a minimum of 10% in July to a maximum of 30% in January. Cogeneration is
not affected directly from the weather conditions but from the demand of thermal loads (water heating
or/and space heating). Instead, biomass operates with the largest capacity factor more than 50% with
negligible seasonal variation.

It must be noted that there is not any long-term variation since the evolution of penetration does
not affect capacity factors. The variation that appears in Figure 7 is statistical due to weather conditions
that differ among years.

Figure 8 presents the seasonal variation of the electricity consumption. Again, long-term variation
is not observed since, due to Greek crisis, the energy demand remains constant (see also the 12-month
moving average in

Figure 9 presents the real data for renewable shares for four years (2006, 2010, 2014, 2018) separately
for each technology and the total RES. The long-term evolution along with the seasonal variation is
concluded. The resulting total RES curve depends on the technology mixture. Figure 3).

A general conclusion that can be extracted comparing monthly electricity consumption of Figure 8
with renewable share penetrations of Figure 9 is that demand during summer months is statistically
always the highest. This peak summer demand is mainly supported by PVs, since their share is the
highest compared to the rest RES technologies and also preserved at these high levels during all these
summer months. Furthermore, PV contribution among years with comparable installed capacity leads
to stable levels of shares in covering electricity consumption. In other words, their operation, and the
energy expectations out of them among different years, seem rather stable at a monthly level. On the
contrary, wind penetration comparatively supports winter consumption while their shares in covering
electricity demand significantly fluctuate over the years. For instance, with a fairly stable demand
between 2014 and 2018, wind farms’ share fluctuation seems about double the variance, which can
be attributed to the increase in their total installed capacity. Small hydro contribution peaks during
spring months, while electricity consumption is at relatively low levels in the interconnected system.
Biomass–biogas technologies in principle are not considered intermittent. Their fluctuation concerns
mainly raw material availability in order to preserve a steady level of operation. However, their
installed capacity is still very small in Greece, so it is a bit premature to proceed to further conclusions.
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4.4. Model Fitting

The cosine Equation (4) is fitted to seasonal capacity factor data for the five recent years (2014–2018)
and the results are summarized in Table 1 and Figure 10. Since the standard deviation between actual
and calculated values (lack of fit) is about equal to the experimental error (random variation), the
goodness of fit can be considered as adequate.

Table 1. Seasonal variation of capacity factor: Model parameter estimation results (Equation (4)).

Renewable Source Photovoltaics Wind Hydropower Biomass Cogeneration

Annual Average cav 0.169 0.249 0.349 0.519 0.209
Seasonal Variation ∆c 0.060 0.038 0.193 0.015 0.096

Month of Maximum Capacity Factor to 6.67 0.38 2.89 2.07 1.11
July January March March February

Standard Deviation between
Actual and Calculated Values

0.023 0.071 0.081 0.016 0.024

Random Variation (Volatility) σ 0.010 0.042 0.056 0.023 0.023
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The comparison between experimental and predicted values are shown in Figure 10 where the
real data are denoted with dots and the predictions with continues curves. The differences in seasonal
variations between technologies are compared in Figure 11.
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Figure 12 presents the seasonal and random variation for every RES technology.Energies 2019, 12, x FOR PEER REVIEW 16 of 21 
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The proposed model of Equation (9) is fitted to real consumption data and the results are presented
in Table 2 and Figure 13. Since the standard deviation between actual and calculated values (lack of fit)
is less than the experimental error (random variation), the goodness of fit is adequate.

Table 2. Seasonal variation of electricity consumption: Model parameter estimation results (Equation (9)).

Annual Electricity Consumption (TWh) D 51.3 TWh

Winter Activities Fraction dw 0.131 -
Winter Activities Peak Month two 1.00 mo

Winter Activities Standard Period ∆tw 1.92 mo

Summer Activities Fraction ds 0.094 -
Summer Activities Peak Month tso 7.27 mo

Summer Activities Standard Period ∆ts 1.20 mo

Standard Deviation between
Actual and Calculated Values 0.10 TWh

Standard Experimental Error 0.13 TWh
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The combined validation of models Equations (4) and (9) are further tested on real renewable
share data in Figure 14. Figure 14a refers to total RES for five selected years while Figure 14b refers to
the year 2018 for three selected technologies.
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4.5. Forecasting

The proposed validated models can now be used to forecast the renewable share and its seasonal
variation in different renewable penetration scenarios. Some examined scenarios are described in
Table 3 including the new national energy and climate plan (NECP) 2030 targets [25]. This plan
pursues a radical change of Greece’s energy mix, favoring renewables, up to the 32% of final energy
consumption, leading to a reduction of 63% on greenhouse gas emissions. To achieve this goal, the plan
foresees a radical transformation of the electricity sector, as renewable energy will substitute fossil fuels
with a contribution of approximately 56% on final gross electricity consumption. This RES penetration
will be driven by reduced electricity generation costs in the sector, especially PV and wind energy
technology, and a withdrawal of old lignite and diesel-fired power stations, whose production costs
are expected to increase as a result of higher CO2 emission right costs. For major RES technologies,
2030 targets in GW of capacity are: Wind 6.4, PV 6.9, small and large hydro at 3.9, biomass–biogas at
0.3. Since the national plan does not offer targets for small hydro and cogeneration, their contribution
is considered in the relative scenario as double compared to the present in terms of installed capacity.
The results of the examined scenarios are presented in Figure 15.

Table 3. Renewable penetration scenarios in GW of installed power.

Scenario Photovoltaics Wind Hydropower Biomass Cogeneration

Existing 2.49 2.56 0.24 0.08 0.10
Solar 4.98 2.56 0.24 0.08 0.10
Wind 2.14 5.11 0.24 0.08 0.10
Water 2.14 2.56 0.48 0.08 0.10

Double 4.98 5.11 0.48 0.16 0.20
National Energy and

Climate Plan 2030
6.90 6.40 0.48 0.16 0.20
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Through the examined scenarios for RES penetration presented in Figure 15, it is obvious that
fluctuation of their share in covering electricity demand will continue. However, combining Figure 15
with Figure 13, it becomes fairly clear that this fluctuation is also triggered by the seasonality in demand,
namely the summer and winter peaks, and not RES infusions alone.

5. Conclusions

The significant penetration of the renewables in electricity market during the last 12 years in Greece
was triggered from feed-in tariff-supporting schemes according to the compliance with European
Directives. The related laws were presented and analyzed.

Wind electricity follows a linear penetration with almost constant growth, photovoltaics appeared
with a step increment during the years 2012 and 2013 remaining constant afterwards, while the
penetration of other renewables remained at low levels.

Generally, the renewable penetration affects the electricity market and especially the system
marginal price. In the case of Greece, it was proved that up until now (approximately 21% renewable
share excluding large hydro in total electricity consumption of interconnected system), the penetration
does decrease the system marginal price and equally increases the renewable surcharge.

Simple but effective models were proposed to describe renewable seasonal variation: (a) A simple
cosine model adequately describes the seasonal performance of various renewable technologies in terms
of capacity factor, (b) a smart seasonal model based on the separation between winter and summer
consumption activities (both following normal distributions) adequately describes the electricity
consumption profile. The predicted values of renewable shares using the proposed models were also
validated with historical data.

The resulting validated models can be used to forecast renewable shares under various future
penetration scenarios when the penetration will be at higher values.

Author Contributions: This paper is a partial fulfillment of S.L. PhD degree supervising by E.G. (post doctor)
and Z.M.; S.L. PhD refers to electricity market and especially to renewables’ contribution. E.G.’s post doc research
refers to renewables’ penetration. All authors contributed equally according to the classical academic scheme:
PhD student, post doctor, supervisor professor.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Nomenclature

c the capacity factor
cav the annual average capacity factor
ci j the capacity factor of the calendar month j (j = 1, 2, . . . , 12) of the calendar year i
D the electricity consumption at time t (TWh/month)
ds the portion of the total consumption for summer activities
DT the total electricity demand during the year (TWh/year)
dw the portion of the total consumption for winter activities
E the renewable electricity production (TWh/year)
FIT the feed-in tariff (€/MWh)
P the installed power (GW)
RSC the renewable surcharge (€/MWh)
s the renewable share in electricity consumption
SMP the system marginal price (€/MWh)
t the time (months)
to the time at minimum capacity factor (months)
tso the time of the peak of summer activities (months)
two the time of the peak of winter activities (months)
∆c the half range of annual variation of the capacity factor
∆ts the typical duration of the summer activities (months)
∆tw the typical duration of the winter activities (months)
µ j the mean value of the calendar month j
σ the random standard variation
σ j the random standard variation of the calendar month j

Abbreviations

CO2 Carbon Dioxide
DEDDIE Hellenic Electricity Distribution Network Operator (Greek abbreviation)
DESMIE Hellenic Transmission System Operator (Greek abbreviation)
ETMEAR Surcharge on Electricity Price (Greek abbreviation)
FIP Feed-in Premium
FIPC Feed-in Premium Contracts
FIT Feed-in Tariff
HEDNO Hellenic Electricity Distribution Network Operator
HEMO Hellenic Electricity Market Operator
HTSO Hellenic Transmission System Operator
IRR Internal Rate of Return
LAGIE Hellenic Electricity Market Operator (Greek abbreviation)
MD Ministerial Decision
MNGP Mean Natural Gas Price
NECP National Energy and Climate Plan
PPA Power Purchase Agreement
PPC Public Power Corporation
PV Photovoltaics
RAE Regulatory Authority of Energy
RCS Surcharge on Electricity Price
RES Renewable Energy Sources
RT Reference Tariff
SMPRES Special Market Price for Renewables
SPM System Marginal Price
TSO Transmission System Operator
WAVCCTU Weighted Average Variable Cost of Conventional Thermal Units
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